Tandem 1,3-azaprotio cyclotransfer–cycloaddition reactions between aldoximes and divinyl ketone. The effect of oxime *E***/***Z***-isomerism on cycloaddition stereoselectivity**

Peter J. Dunn,*b* **Alison B. Graham,***a* **Ronald Grigg,****a* **Paul Higginson***b* **and Imaad S. Saba***a*

a Molecular Innovation, Diversity and Automated Synthesis (MIDAS) Centre, School of Chemistry, The University of Leeds, Leeds, UK LS2 9JT. E-mail: R.Grigg@chem.leeds.ac.uk b Pfizer Global Research & Development (UK), Sandwich, Kent, UK CT13 9NJ

Received (in Cambridge, UK) 5th July 2000, Accepted 11th September 2000 First published as an Advance Article on the web 2nd October 2000

The tandem 1,3-azaprotiocyclotransfer–cycloaddition reaction between aldoximes and divinyl ketone affords mixtures of *exo***- and** *endo***-isomers of substituted 1-aza-8-oxabicyclo[3.2.1]octan-4-ones, the ratio of which is dependent on the** *E***/***Z* **geometry of the starting oxime and its ability to isomerise under the thermal reaction conditions.**

We recently reported that the tandem 1,3-azaprotio cyclotransfer–cycloaddition reaction between symmetrical ketoximes $(R' = R)$ and divinyl ketone 2 (or its equivalents) is selective for cycloadducts **3** or **4**, depending on solvent or additive.1 Reductive cleavage of **3** and **4** can afford *piperidones* **5** and *perhydroazepinones* **6**, potentially making these Class 2 cascades viable routes to various alkaloids and other related natural products (Scheme 1).2 We have been exploring the

scope of this reaction with aldoximes **1** (R or $R' = H$). Under thermal reaction conditions (81 °C, acetonitrile) symmetrical ketoximes $(R = R')$ afford mixtures of 3 and 4, whereas aldoximes (\dot{R} or $R' = H$) afford **4** only (as a mixture of *exo*- and *endo*-isomers) (Scheme 2).

Under thermal reaction conditions aldoximes isomerise to a mixture of *E*- and *Z*-isomers. The rate of *E/Z* equilibration is dependent on temperature and the nature of the aldoxime R group. The desired 1,3-azaprotiocyclotransfer process (herein referred to as 1,3-APT) (Scheme 3) can occur between either *E*or *Z*-oxime isomer and **2** to form respective *E-* and *Z-*nitrones. Nitrones are not expected to isomerise under the reaction conditions.3 Intramolecular 1,3-dipolar cycloaddition then pro-

ceeds completely regioselectively from the *Z*-nitrone affording *exo-***4** (*path a)* or the *E*-nitrone affording *endo-***4** (*path b*).4 A survey of aldoximes **1a**–**f**showed that the diastereoselectivity of the reaction is dependent on the size of the aldoxime R group (Table 1). Increasing the size of the R group (aldoximes **1b**–**d**) resulted in a decrease in *exo*-selectivity. However, the case of **1e** perturbed this trend, affording *exo*-**4e** as the sole product.

It is proposed that *path a* and *path b* can have different rate determining steps. In *path a,* oxime isomerism can become the rate determining step when the steric clash resulting from the *cis*-relationship of the R and hydroxy moieties in the *Z*-oxime is severe or due to the electronic properties of R (*vide infra*). In contrast, 1,3-APT is rate determining in *path b* because the R group impedes the reactivity of the lone pair. The ratio of *exo*and *endo*-products is determined by the relative rates of these steps and this is determined by the nature of R. Predominant formation of *exo*-**4** (*e.g.* for aldoximes **1a**,**b**) indicates that oxime *E/Z*-isomerism is faster than *E*-oxime 1,3-APT.

Though an increase in the size of the R group will decrease both the rate of oxime isomerism and *E*-oxime 1,3-APT, we propose that the effect is more pronounced on the oxime isomerism step due to the increased steric clash between the R and hydroxy moieties. The *E*-oxime 1,3-APT step can occur

a Reaction conditions: divinyl ketone (1.2 eq.), acetonitrile, 48 h, carried out in a STEM block at 80 °C. *b* Determined by 1H NMR. *c* Combined yield isolated by column chromatography.

a Reaction conditions: Divinyl ketone (1.2 eq.), acetonitrile, 80 °C, 48 h. *b* Determined by ¹H NMR. Where the ratio of isomers is > 20:1 no trace of the minor isomer was detected. *c* Yield isolated by column chromatography.

provided the oxime R substituent contains an α -hydrogen (as in **1a**–**d**). This allows conformations where a C–H bond, as opposed to a $C-R'$ bond, impedes the reactivity of the lone pair. As the size of R increases, the increasingly sluggish nature of the *E*-oxime 1,3-APT step is reflected in the lower yields and conversions (Table 1). Where the oxime contains no α hydrogens (**1e**) severe impediment of the lone pair's reactivity is unavoidable and 1,3-APT can only proceed *via* the *Z*-oxime (*path a*). The sluggish nature of the oxime isomerism step for **1e** is reflected in the low conversion (25% after 48 h) and yield (11%)

Unlike aliphatic oximes (*E*)-benzaldoxime **1f** does not isomerise at 81 °C. Both *E*- and *Z*-isomers can be prepared and stored separately.5,6 The observation that (*E*)-**1f** forms *endo-***4f** exclusively while (*Z*)-**1f** affords *exo-***4f** exclusively (Table 2) supports our hypothesis. In order to determine the effect of the electronic nature of the aryl ring on oxime isomerism we carried out the cascade with both *E*- and *Z*-isomers of *para*-substituted benzaldoximes (Table 2). We observed that the presence of electron donating groups promotes oxime isomerism, affording mixtures of *exo*- and *endo*-isomers. The presence of electron withdrawing groups in the aromatic ring does not promote oxime isomerism and instead 'switches off' the 1,3-APT step for *E*-oxime isomers. Switching to the *Z*-isomers in the case of these electron deficient benzaldoximes allows the reactions to proceed, leading to *exo*-**4** exclusively.

Increasing the reaction temperature from 80 to 95 °C (closed system) resulted in an increase in the propensity of aliphatic aldoximes to form the *exo-*isomer (Table 3). We were able to utilise this effect in the case of phenyl acetaldehyde oxime (**1a**), attaining *exo*-selectivity of 8:1 (81%) when the reaction temperature was 120 °C (closed system) (Table 3). Similarly, **1b** afforded an 8+1 ratio of *exo-***4b** and *endo-***4b** (65%). Increasing the temperature of the system further $(150 \degree \degree C)$ resulted in identical *exo*-selectivity, however. It is proposed that high temperatures facilitate higher rates of *E/Z*-oxime equilibration, leading to enhanced *exo*-selectivity.7

In conclusion we have demonstrated that this tandem 1,3-APT-cycloaddition cascade between aldoximes and divinyl **Table 3***a*

a Reaction conditions: Divinyl ketone (1.2 eq.), acetonitrile, STEM block at 95 °C, 48 h. *b* Temperature of STEM block. *c* Temperature of closed system. *d* Determined by 1H NMR. *e* Combined yield of *exo*-**4** and *endo*-**4** isolated by column chromatography.

ketone can afford single diastereomers with predictable *exo*- or *endo*-stereochemistry by a correct choice of conditions: high temperatures for aliphatic aldoximes and correct choice of starting oxime for aromatic aldoximes.

Notes and References

- 1 I. S. Saba, M. Frederickson, R. Grigg P. Dunn and P. Levett, *Tetrahedron Lett.*, 1997, **38**, 6099.
- 2 I. S. Saba, PhD Thesis, 1997, University of Leeds.
- 3 R. Grigg, F. Heaney, S. Surendrakumer and W. Warnock, *Tetrahedron*, 1991, **47**, 4477.
- 4 The reasons for this regioselective formation of **4** are discussed in the proceeding communication.
- 5 R. Grigg, F. Heaney, S. Surendrakumar and W. Warnock, *Tetrahedron*, 1991, **47**, 4477.
- 6 R. Grigg, M. Dorrity, F. Heaney, J. Malone, S. Rajviroongit, V. Sridharan and S. Surendrakumar, *Tetrahedron*, 1991, **47**, 8297.
- 7 A mixture of *exo-***3b** and *endo-***3b** was recovered unchanged, in good recovery after heating in a closed system at 120 °C. Thus proving that a cycloreversion–cycloaddition is not responsible for the increased *exo*selectivity.